ecdsa works! now time for some tests...
This commit is contained in:
223
core/bn.js
223
core/bn.js
@@ -1,14 +1,14 @@
|
||||
/**
|
||||
* Constructs a new bignum from another bignum, a number or a hex string.
|
||||
*/
|
||||
function bn(it) {
|
||||
sjcl.bn = function(it) {
|
||||
this.initWith(it);
|
||||
}
|
||||
|
||||
bn.prototype = {
|
||||
sjcl.bn.prototype = {
|
||||
radix: 24,
|
||||
maxMul: 8,
|
||||
_class: bn,
|
||||
_class: sjcl.bn,
|
||||
|
||||
copy: function() {
|
||||
return new this._class(this);
|
||||
@@ -103,29 +103,116 @@ bn.prototype = {
|
||||
/** this += that. Does not normalize. */
|
||||
addM: function(that) {
|
||||
if (typeof(that) !== "object") { that = new this._class(that); }
|
||||
var i;
|
||||
for (i=this.limbs.length; i<that.limbs.length; i++) {
|
||||
this.limbs[i] = 0;
|
||||
var i, l=this.limbs, ll=that.limbs;
|
||||
for (i=l.length; i<ll.length; i++) {
|
||||
l[i] = 0;
|
||||
}
|
||||
for (i=0; i<that.limbs.length; i++) {
|
||||
this.limbs[i] += that.limbs[i];
|
||||
for (i=0; i<ll.length; i++) {
|
||||
l[i] += ll[i];
|
||||
}
|
||||
return this;
|
||||
},
|
||||
|
||||
/** this *= 2. Requires normalized; ends up normalized. */
|
||||
doubleM: function() {
|
||||
var i, carry=0, tmp, r=this.radix, m=this.radixMask, l=this.limbs;
|
||||
for (i=0; i<l.length; i++) {
|
||||
tmp = l[i];
|
||||
tmp = tmp+tmp+carry;
|
||||
l[i] = tmp & m;
|
||||
carry = tmp >> r;
|
||||
}
|
||||
if (carry) l.push(carry);
|
||||
return this;
|
||||
},
|
||||
|
||||
/** this /= 2, rounded down. Requires normalized; ends up normalized. */
|
||||
halveM: function() {
|
||||
var i, carry=0, tmp, r=this.radix, l=this.limbs;
|
||||
for (i=l.length-1; i>=0; i--) {
|
||||
tmp = l[i];
|
||||
l[i] = (tmp+carry)>>1;
|
||||
carry = (tmp&1) << r;
|
||||
}
|
||||
if (!l[l.length-1]) l.pop();
|
||||
return this;
|
||||
},
|
||||
|
||||
/** this -= that. Does not normalize. */
|
||||
subM: function(that) {
|
||||
if (typeof(that) !== "object") { that = new this._class(that); }
|
||||
var i;
|
||||
for (i=this.limbs.length; i<that.limbs.length; i++) {
|
||||
this.limbs[i] = 0;
|
||||
var i, l=this.limbs, ll=that.limbs;
|
||||
for (i=l.length; i<ll.length; i++) {
|
||||
l[i] = 0;
|
||||
}
|
||||
for (i=0; i<that.limbs.length; i++) {
|
||||
this.limbs[i] -= that.limbs[i];
|
||||
for (i=0; i<ll.length; i++) {
|
||||
l[i] -= ll[i];
|
||||
}
|
||||
return this;
|
||||
},
|
||||
|
||||
mod: function(that) {
|
||||
that = new sjcl.bn(that).normalize(); // copy before we begin
|
||||
var out = new sjcl.bn(this).normalize(), ci=0;
|
||||
|
||||
for (; out.greaterEquals(that); ci++) {
|
||||
that.doubleM();
|
||||
}
|
||||
for (; ci > 0; ci--) {
|
||||
that.halveM();
|
||||
if (out.greaterEquals(that)) {
|
||||
out.subM(that).normalize();
|
||||
}
|
||||
}
|
||||
return out.trim();
|
||||
},
|
||||
|
||||
/** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */
|
||||
inverseMod: function(p) {
|
||||
var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1;
|
||||
|
||||
if (!(p.limbs[0] & 1)) {
|
||||
throw (new sjcl.exception.invalid("inverseMod: p must be odd"));
|
||||
}
|
||||
|
||||
// invariant: y is odd
|
||||
do {
|
||||
if (x.limbs[0] & 1) {
|
||||
if (!x.greaterEquals(y)) {
|
||||
// x < y; swap everything
|
||||
tmp = x; x = y; y = tmp;
|
||||
tmp = a; a = b; b = tmp;
|
||||
}
|
||||
x.subM(y);
|
||||
x.normalize();
|
||||
|
||||
if (!a.greaterEquals(b)) {
|
||||
a.addM(p);
|
||||
}
|
||||
a.subM(b);
|
||||
}
|
||||
|
||||
// cut everything in half
|
||||
x.halveM();
|
||||
if (a.limbs[0] & 1) {
|
||||
a.addM(p);
|
||||
}
|
||||
a.normalize();
|
||||
a.halveM();
|
||||
|
||||
// check for termination: x ?= 0
|
||||
for (i=nz=0; i<x.limbs.length; i++) {
|
||||
nz |= x.limbs[i];
|
||||
}
|
||||
} while(nz);
|
||||
|
||||
if (!y.equals(1)) {
|
||||
throw (new sjcl.exception.invalid("inverseMod: p and x must be relatively prime"));
|
||||
}
|
||||
|
||||
return b;
|
||||
},
|
||||
|
||||
/** this + that. Does not normalize. */
|
||||
add: function(that) {
|
||||
return this.copy().addM(that);
|
||||
@@ -184,6 +271,13 @@ bn.prototype = {
|
||||
return out;
|
||||
},
|
||||
|
||||
trim: function() {
|
||||
var l = this.limbs, p;
|
||||
do { p = l.pop() } while (l.length && p == 0);
|
||||
l.push(p);
|
||||
return this;
|
||||
},
|
||||
|
||||
/** Reduce mod a modulus. Stubbed for subclassing. */
|
||||
reduce: function() {
|
||||
return this;
|
||||
@@ -218,20 +312,55 @@ bn.prototype = {
|
||||
}
|
||||
limbs[i] += carry;
|
||||
return this;
|
||||
},
|
||||
|
||||
/** Serialize to a bit array */
|
||||
toBits: function(len) {
|
||||
this.fullReduce();
|
||||
len = len || this.exponent || this.limbs.length * this.radix;
|
||||
var i = Math.floor((len-1)/24), w=sjcl.bitArray, e = (len + 7 & -8) % this.radix || this.radix;
|
||||
out = [w.partial(e, this.getLimb(i))];
|
||||
for (i--; i >= 0; i--) {
|
||||
out = w.concat(out, [w.partial(this.radix, this.getLimb(i))]);
|
||||
}
|
||||
return out;
|
||||
},
|
||||
|
||||
/** Return the length in bits, rounded up to the nearest byte. */
|
||||
bitLength: function() {
|
||||
this.fullReduce();
|
||||
var out = this.radix * (this.limbs.length - 1);
|
||||
var b = this.limbs[this.limbs.length - 1];
|
||||
for (; b; b >>= 1) {
|
||||
out ++;
|
||||
}
|
||||
return out+7 & -8;
|
||||
}
|
||||
};
|
||||
|
||||
/* Initialization routines for bignum library. */
|
||||
(function init(){
|
||||
bn.prototype.ipv = 1 / (bn.prototype.placeVal = Math.pow(2,bn.prototype.radix));
|
||||
bn.prototype.radixMask = (1 << bn.prototype.radix) - 1;
|
||||
})();
|
||||
sjcl.bn.fromBits = function(bits) {
|
||||
var out = new this(), words=[], w=sjcl.bitArray, t = this.prototype,
|
||||
l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix;
|
||||
|
||||
words[0] = w.extract(bits, 0, e);
|
||||
for (; e < l; e += t.radix) {
|
||||
words.unshift(w.extract(bits, e, t.radix));
|
||||
}
|
||||
|
||||
out.limbs = words;
|
||||
return out;
|
||||
};
|
||||
|
||||
|
||||
|
||||
sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix))
|
||||
sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1;
|
||||
|
||||
/**
|
||||
* Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime,
|
||||
* i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse.
|
||||
*/
|
||||
function pseudoMersennePrime(exponent, coeff) {
|
||||
sjcl.bn.pseudoMersennePrime = function(exponent, coeff) {
|
||||
function p(it) {
|
||||
this.initWith(it);
|
||||
/*if (this.limbs[this.modOffset]) {
|
||||
@@ -239,7 +368,7 @@ function pseudoMersennePrime(exponent, coeff) {
|
||||
}*/
|
||||
}
|
||||
|
||||
var ppr = p.prototype = new bn(), i, tmp, mo;
|
||||
var ppr = p.prototype = new sjcl.bn(), i, tmp, mo;
|
||||
mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix);
|
||||
ppr.exponent = exponent;
|
||||
ppr.offset = [];
|
||||
@@ -248,7 +377,7 @@ function pseudoMersennePrime(exponent, coeff) {
|
||||
ppr.fullMask = 0;
|
||||
ppr.fullOffset = [];
|
||||
ppr.fullFactor = [];
|
||||
ppr.modulus = p.modulus = new bn(Math.pow(2,exponent));
|
||||
ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent));
|
||||
|
||||
ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix);
|
||||
|
||||
@@ -257,7 +386,7 @@ function pseudoMersennePrime(exponent, coeff) {
|
||||
ppr.fullOffset[i] = Math.ceil(coeff[i][0] / ppr.radix - tmp);
|
||||
ppr.factor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.offset[i] * ppr.radix);
|
||||
ppr.fullFactor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.fullOffset[i] * ppr.radix);
|
||||
ppr.modulus.addM(new bn(Math.pow(2,coeff[i][0])*coeff[i][1]));
|
||||
ppr.modulus.addM(new sjcl.bn(Math.pow(2,coeff[i][0])*coeff[i][1]));
|
||||
ppr.minOffset = Math.min(ppr.minOffset, -ppr.offset[i]); // conservative
|
||||
}
|
||||
ppr._class = p;
|
||||
@@ -336,49 +465,29 @@ function pseudoMersennePrime(exponent, coeff) {
|
||||
return (this.power(this.modulus.sub(2)));
|
||||
};
|
||||
|
||||
ppr.toBits = function() {
|
||||
this.fullReduce();
|
||||
var i=this.modOffset - 1, w=sjcl.bitArray, e = (this.exponent + 7 & -8) % this.radix || this.radix;
|
||||
out = [w.partial(e, this.getLimb(i))];
|
||||
for (i--; i >= 0; i--) {
|
||||
out = w.concat(out, [w.partial(this.radix, this.getLimb(i))]);
|
||||
}
|
||||
return out;
|
||||
};
|
||||
|
||||
p.fromBits = function(bits) {
|
||||
|
||||
var out = new this(), words=[], w=sjcl.bitArray, t = this.prototype,
|
||||
l = Math.min(w.bitLength(bits), t.exponent + 7 & -8), e = l % t.radix || t.radix;
|
||||
|
||||
words[0] = w.extract(bits, 0, e);
|
||||
for (; e < l; e += t.radix) {
|
||||
words.unshift(w.extract(bits, e, t.radix));
|
||||
}
|
||||
|
||||
out.limbs = words;
|
||||
return out;
|
||||
};
|
||||
p.fromBits = sjcl.bn.fromBits;
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
// a small Mersenne prime
|
||||
p127 = pseudoMersennePrime(127, [[0,-1]]);
|
||||
sjcl.bn.prime = {
|
||||
p127: sjcl.bn.pseudoMersennePrime(127, [[0,-1]]),
|
||||
|
||||
// Bernstein's prime for Curve25519
|
||||
p25519 = pseudoMersennePrime(255, [[0,-19]]);
|
||||
// Bernstein's prime for Curve25519
|
||||
p25519: sjcl.bn.pseudoMersennePrime(255, [[0,-19]]),
|
||||
|
||||
// NIST primes
|
||||
p192 = pseudoMersennePrime(192, [[0,-1],[64,-1]]);
|
||||
p224 = pseudoMersennePrime(224, [[0,1],[96,-1]]);
|
||||
p256 = pseudoMersennePrime(256, [[0,-1],[96,1],[192,1],[224,-1]]);
|
||||
p384 = pseudoMersennePrime(384, [[0,-1],[32,1],[96,-1],[128,-1]]);
|
||||
p521 = pseudoMersennePrime(521, [[0,-1]]);
|
||||
// NIST primes
|
||||
p192: sjcl.bn.pseudoMersennePrime(192, [[0,-1],[64,-1]]),
|
||||
p224: sjcl.bn.pseudoMersennePrime(224, [[0,1],[96,-1]]),
|
||||
p256: sjcl.bn.pseudoMersennePrime(256, [[0,-1],[96,1],[192,1],[224,-1]]),
|
||||
p384: sjcl.bn.pseudoMersennePrime(384, [[0,-1],[32,1],[96,-1],[128,-1]]),
|
||||
p521: sjcl.bn.pseudoMersennePrime(521, [[0,-1]])
|
||||
};
|
||||
|
||||
bn.random = function(modulus, paranoia) {
|
||||
if (typeof modulus != "object") { modulus = new bn(modulus); }
|
||||
var words, i, l = modulus.limbs.length, m = modulus.limbs[l-1]+1, out = new bn();
|
||||
sjcl.bn.random = function(modulus, paranoia) {
|
||||
if (typeof modulus != "object") { modulus = new sjcl.bn(modulus); }
|
||||
var words, i, l = modulus.limbs.length, m = modulus.limbs[l-1]+1, out = new sjcl.bn();
|
||||
while (true) {
|
||||
// get a sequence whose first digits make sense
|
||||
do {
|
||||
|
||||
Reference in New Issue
Block a user